Fire, more than logging, drives Amazon forest degradation, study finds

first_img Popular in the CommunitySponsoredSponsoredOrangutan found tortured and decapitated prompts Indonesia probeEMGIES17 Jan, 2018We will never know the full extent of what this poor Orangutan went through before he died, the same must be done to this evil perpetrator(s) they don’t deserve the air that they breathe this has truly upset me and I wonder for the future for these wonderful creatures. So called ‘Mankind’ has a lot to answer for we are the only ones ruining this world I prefer animals to humans any day of the week.What makes community ecotourism succeed? In Madagascar, location, location, locationScissors1dOther countries should also learn and try to incorporateWhy you should care about the current wave of mass extinctions (commentary)Processor1 DecAfter all, there is no infinite anything in the whole galaxy!Infinite stupidity, right here on earth.The wildlife trade threatens people and animals alike (commentary)Anchor3dUnfortunately I feel The Chinese have no compassion for any living animal. They are a cruel country that as we knowneatbeverything that moves and do not humanily kill these poor animals and insects. They have no health and safety on their markets and they then contract these diseases. Maybe its karma maybe they should look at the way they live and stop using animals for all there so called remedies. DisgustingConservationists welcome China’s wildlife trade banThobolo27 JanChina has consistently been the worlds worst, “ Face of Evil “ in regards our planets flora and fauna survival. In some ways, this is nature trying to fight back. This ban is great, but the rest of the world just cannot allow it to be temporary, because history has demonstrated that once this coronavirus passes, they will in all likelihood, simply revert to been the planets worst Ecco Terrorists. Let’s simply not allow this to happen! How and why they have been able to degrade this planets iconic species, rape the planets rivers, oceans and forests, with apparent impunity, is just mind boggling! Please no more.Probing rural poachers in Africa: Why do they poach?Carrot3dOne day I feel like animals will be more scarce, and I agree with one of my friends, they said that poaching will take over the world, but I also hope notUpset about Amazon fires last year? Focus on deforestation this year (commentary)Bullhorn4dLies and more leisSponsoredSponsoredCoke is again the biggest culprit behind plastic waste in the PhilippinesGrapes7 NovOnce again the article blames companies for the actions of individuals. It is individuals that buy these products, it is individuals that dispose of them improperly. If we want to change it, we have to change, not just create bad guys to blame.Brazilian response to Bolsonaro policies and Amazon fires growsCar4 SepThank you for this excellent report. I feel overwhelmed by the ecocidal intent of the Bolsonaro government in the name of ‘developing’ their ‘God-given’ resources.U.S. allocates first of $30M in grants for forest conservation in SumatraPlanet4dcarrot hella thick ;)Melting Arctic sea ice may be altering winds, weather at equator: studyleftylarry30 JanThe Arctic sea ice seems to be recovering this winter as per the last 10-12 years, good news.Malaysia has the world’s highest deforestation rate, reveals Google forest mapBone27 Sep, 2018Who you’re trying to fool with selective data revelation?You can’t hide the truth if you show historical deforestation for all countries, especially in Europe from 1800s to this day. WorldBank has a good wholesome data on this.Mass tree planting along India’s Cauvery River has scientists worriedSurendra Nekkanti23 JanHi Mongabay. Good effort trying to be objective in this article. I would like to give a constructive feedback which could help in clearing things up.1. It is mentioned that planting trees in village common lands will have negative affects socially and ecologically. There is no need to even have to agree or disagree with it, because, you also mentioned the fact that Cauvery Calling aims to plant trees only in the private lands of the farmers. So, plantation in the common lands doesn’t come into the picture.2.I don’t see that the ecologists are totally against this project, but just they they have some concerns, mainly in terms of what species of trees will be planted. And because there was no direct communication between the ecologists and Isha Foundation, it was not possible for them to address the concerns. As you seem to have spoken with an Isha spokesperson, if you could connect the concerned parties, it would be great, because I see that the ecologists are genuinely interested in making sure things are done the right way.May we all come together and make things happen.Rare Amazon bush dogs caught on camera in BoliviaCarrot1 Feba very good iniciative to be fallowed by the ranchers all overSponsored Scientists have monitored deforestation for several decades using both on-the-ground and remote methods. Although clear-cut logging continues in earnest across the Amazon, deforestation rates in the Brazilian Amazon are lower than in the early 2000s. Degradation, on the other hand, remains a growing issue and historically has received less attention than forest loss.Measuring irregular losses in Amazon forest carbon stock is difficult. Selective logging targets valuable hardwood tree species such as ironwood and mahogany and typically removes several trees per hectare. Similarly, understory fires – caused by agricultural development, flammable debris leftover from logging, or careless disposal of cigarettes – may leave canopy foliage intact despite a charred underbelly. Modern-day satellite images cannot penetrate the forest canopy to record potential damage below, and isolated instances of degradation may not be visible at the 30-meter or higher resolution of standard satellite imagery. Surveillance by foot can more clearly identify degraded forests but is unfeasible for areas larger than a few hectares (or acres).In the last few decades, fortunately, a groundbreaking tool has managed to achieve both the fine resolution of ground inventory and the broad coverage of satellite data.LiDAR provides high-resolution, three-dimensional depictions of forestLight Detection and Ranging (LiDAR) is a method of remote sensing that uses light waves to measure distances to a target (in this case the Earth’s surface and vegetation) from a transmitter. Lasers are fired, typically from an airplane, at up to 150,000 pulses per second and bounce back to a highly acute sensor located near the source of the lasers. The distance to the target is calculated from how long it takes for the lasers to return, and different spectrums of light can be fired in order to survey different materials or structural properties. Combining the calculated distances travelled by individual lasers, each to a different point of the target, with a highly precise GPS system results in an impressively accurate three-dimensional representation of the target structure.An airborne LiDAR system includes a GPS to provide the plane’s position, an Inertial Motion Unit (IMU) to record the aircraft’s altitude, and a laser that scans back and forth across the terrain below. The laser sends many thousands of light pulses toward Earth that bounce back to the scanner. The return time of the pulses represents the distances from the known height of the plane to the surfaces below. The distance data are used to generate information about the shape and structure of the area’s vegetation. Image by University of Texas Coastal Studies Group.The incorporation of LiDAR data allowed the study’s researchers to explore dimensions of forest loss that previously were hard to quantify. “With LiDAR, we are able to characterize the fine-scale changes in carbon density associated with degradation,” Rappaport said. “[Carbon losses from degradation] have been trickier to characterize than carbon losses from deforestation, which are less subtle in nature.”The high-resolution data LiDAR produces enable scientists to assess the variability in canopy height, a metric of forest ecological stability. Rappaport and her co-authors determined that degradation due to fire and logging resulted in persistent changes in forest canopy structure, habitat that is critical to arboreal organisms such as saki monkeys in Peru.LiDAR data’s remarkable precision does come at a cost that is prohibitively high for most research teams. Since the technology was only recently developed, historic LiDAR data are not available, so change over a long time series cannot be observed.Historic satellite data, such as from the Landsat series, come in great use. The Landsat satellites have been operating continuously for 46 years, and the two currently orbiting satellites, 7 and 8, in combination record freely available images of almost the entire globe in an eight-day cycle. Although the images do not have the spatial resolution of LiDAR [each Landsat pixel is 30 meters (98 feet) across], Landsat complements LiDAR with resolution across time.Intact rainforest canopy in the Amazon Image by Rhett A. Butler/MongabayLiDAR and satellite imagery can record forest structure across space and time, but determining a ratio of carbon per tree or hectare requires on-the-ground assessment of stored carbon. The researchers used tree species and size data from ground-based carbon inventories to estimate the amount of carbon the trees sequester. In combination, the three methods can be very powerful for measuring forest carbon stocks.“Our work to combine forest inventory measurements, airborne LiDAR, and Landsat time series serves as a blueprint for the synergistic use of multiple datasets to estimate carbon emissions from forest degradation,“ Rappaport said.Using this multifaceted approach, Rappaport and her colleagues estimated the loss of carbon due to forest degradation and the relative contributions by logging and fire. Their estimates of carbon loss due to fire were about three times higher than such estimates derived from field experiments or forest inventories in previous studies. Additionally, forests that experienced three or more recurrent fire events in 15 years or less were left with an average of 10 percent of the carbon stock found in the original forest stand.The researchers conclude that fire has the potential to release more carbon stocks than either selective logging or clear-cutting. And conditions may only get worse for the Amazon: projections of more frequent and intense droughts suggest hotter, bigger fires.Map of degraded and intact forest stands in the Brazilian state of Mato Grosso, where researchers from University of Maryland and NASA recorded forest degradation from fire and logging via ground-based, satellite and LiDAR data. Forest appears green, deforested areas appear pink, and circles indicate the center of forest stands with LiDAR coverage (see key for color code; U—undisturbed; L—logged; LB—logged and burned; B—burned). Figure from Rappaport et al. (2018). Quantifying long-term changes in carbon stocks and forest structure from Amazon forest degradation. Environmental Research Letters, 13.Accurate carbon estimates can revise outdated baselinesAlthough high-resolution data from sources such as LiDAR can reveal somber findings, acquiring an accurate depiction of the full amount of carbon lost due to both deforestation and degradation is critical to understanding – and preventing – anthropogenic disturbance of forests.Rappaport recommends that their findings be used to update guidelines for monitoring carbon stocks present within intact and degraded forests, a key requirement for countries seeking performance-based payments from reducing emissions from deforestation and forest degradation (REDD+) programs.“By combining the emissions factors published in this study with [forest cover change] data from satellite observations, we will be able to verify the long-term role that Amazon forest degradation plays within regional carbon cycling,” she said. Rappaport added that they could also “establish emissions baselines necessary for supporting the implementation of REDD+.”Additionally, because their high-resolution methods revealed that forest carbon stocks vary by about two orders of magnitude, the authors recommend multiple classes of degraded forest under the REDD+ framework.Such baselines and classifications are critical to determining the readiness of a nation to begin a REDD+ program and to monitoring the amount of carbon stock retained. The United Nations and World Bank fund two of the most prominent REDD+ programs, and partner countries, including every Amazonian nation but Brazil and Venezuela, must regularly monitor and report forest carbon stocks. If the monitoring process does not capture the full amount of carbon lost due to forest degradation, participating nations may be given more credit than is deserved.A refined understanding of the drivers of forest degradation can also refocus preventative efforts. The World Bank and the International Union for the Conservation of Nature (IUCN) quickly deployed fire control projects in the aftermath of the massive El Niño drought across the Amazon in 1998. With the provision of additional mapping of forest damage due to fires, and with organizations such as Brazil’s National Institute of Space Research taking note, widespread preventative initiatives could be revitalized.Although some international policy currently lags behind cutting-edge forest monitoring capabilities, it would not be the first time that remote sensing data has induced policy change.Looking over the Amazon forest canopy at dawn. Image by Brazilian things, CC 4.0“[Brazil]’s advanced satellite-based monitoring system was a central agent in spurring increased law enforcement and responsive action against forest clearing,” Rappaport said. More widespread LiDAR coverage throughout the Amazon is on the horizon, and continued surveillance will likely stir up more attention, and policy change, in response to forest degradation and the serious impact of anthropogenic fires. “Remote sensing is uniquely poised to help drive and enforce policy change to stem deforestation and degradation.”CitationRappaport, D, I., Morton, D. C., Longo, M., Keller, M., Nara dos-Santos, M. (2018). Quantifying long-term changes in carbon stocks and forest structure from Amazon forest degradation. Environmental Research Letters, 13.  https://doi.org/10.1088/1748-9326/aac331FEEDBACK: Use this form to send a message to the editor of this post. If you want to post a public comment, you can do that at the bottom of the page. Article published by Sue Palminteri Amazon, Amazon Rainforest, Conservation Solutions, data, Forests, LiDAR, Rainforest Conservation, Rainforests, Redd, Remote Sensing, satellite data, Satellite Imagery, Sensors, Technology, Tropical Forests, Wildtech center_img Although deforestation (left) is absolute and uniform, forest degradation (right) tends to be more irregular and patchy. Its effects on the forest interior are often undetectable from satellite imagery. Images by Rhett A. Butler/Mongabay.   Forest degradation has historically been overlooked in accounting and monitoring carbon stocks.A recent study combined ground-based inventory, satellite and LiDAR data to record the loss of carbon due to forest degradation in areas exposed to logging, fire damage, or both, in the arc of deforestation of the southeastern Amazon.The study revealed that fire damage causes greater losses than logging, and fire-damaged forests recovered more slowly than logged forests.Accurate depictions of both deforestation and degradation are necessary to establish emissions baselines used to inform programs to reduce emissions from deforestation and forest degradation (REDD+). The shrieking rip of a chainsaw and the muffled roar of fire: both of these sounds are associated with extensive destruction of Amazon rainforest. But is logging or human-caused fire a larger issue for the fate of the Amazon? And when such activities culminate in a partially degraded forest – rather than complete deforestation – is there much cause for alarm?A recent study published in Environmental Research Letters explored these questions. Using a combination of ground-based, satellite and LiDAR data, scientists from the University of Maryland and NASA recorded the loss of carbon due to forest degradation in areas exposed to logging, fire damage, or both, in 20,000 square kilometers (7,722 square miles) of the southeast Amazon’s “arc of deforestation,” a crescent-shaped strip of intensive forest conversion along the southern and eastern edges of the forest.The Amazon arc of deforestation stretches across the southern and eastern edges of the forest and is rapidly expanding into the forest’s core. Data in Global Forest Watch from Hansen et al (2013) and Brazil’s National Institute of Space Research (INPE) PRODES project.The researchers found that degraded forest stands contained an average of 45.1 percent of the amount of carbon stored in intact forest stands. They compared the impacts of fire and logging, the two most prominent drivers of loss of forest carbon stocks. Fires not only resulted in higher loss of stored carbon than logging, but fire-damaged forests also recovered more slowly than logged forests. Forests subjected to fire remained more impacted after 15 years than forests subjected to logging after the same duration, and neither type of forest recovered to pre-disturbance carbon density.“We combined [forest inventory, satellite and LiDAR data] within a modeling framework to predict how losses and recovery rates of carbon stocks/forest structure are driven by differences in the type, intensity, and frequency of human degradation,“ said the study’s lead author Danielle Rappaport, a doctoral candidate at the University of Maryland. “By providing the first comprehensive set of emissions factors for Amazon forest degradation, this work aims to help support the formal integration of degradation within carbon accounting systems, which have generally excluded degradation all together.”Forest degradation discrete, dangerousDegradation, unlike deforestation, is not absolute. Instead of a complete elimination of forest from the land, degradation is a more subtle process through which patches of forest, or even just individual trees, are lost. But the loss is still significant: 50,815 square kilometers (19,620 square miles) of forest in the Brazilian Amazon was degraded between 2000 and 2010, and emissions from degradation in the Amazon may be higher than those from deforestation. Additionally, the decreased structural complexity of degraded forests cannot support as much biodiversity as primary, undamaged forest.last_img

Leave a Reply

Your email address will not be published. Required fields are marked *